Environmental Sensing Capability vs Incumbent-Informing Capability

December marks a year that shared spectrum networks have been in full commercial operation. During this year when robust broadband communication has become so important for learning and livelihoods, we’ve seen a rapid growth in CBRS radios deployed, numbering well over 100,000 today. At the core of the successful deployment of shared spectrum is a sensor network that can securely detect when naval radar needs access to a portion of the spectrum. Commercial users can then be moved onto other channels, ensuring maximum spectral efficiency. This is the Environmental Sensing Capability (ESC) network.

In public forums and FCC filings, Google has recently raised the disingenuous concern that the ESC network is a failure, and that regulatory bodies and the industry should consider an alternate approach through which the DoD would inform Spectrum Access System (SAS) administrators when it is planning to use shared midband spectrum – called Incumbent-Informing Capability (IIC). IIC is not a new idea. It was discussed at length and ruled out in favor of ESC prior to the CBRS rules being set in 2015. The FCC and DoD agreed then, and still maintain, that deploying a sensor network is preferable and necessary due to the security and operational risks introduced by deploying an IIC.

IIC networks today require manual input and maintenance, and so introduce the possibility that the largest commercial networks might be taken down by simple human input error. At the same time an IIC can be reliable, secure and accurate if the input can become foolproof, perhaps through automation. IICs may well become the best option for spectrum sharing in the future, which is why the NTIA is opening the discussion once again. We have extensive experience building IIC-like technology (for example the Radio Frequency and Interference Monitoring System for NOAA), and we’re teaming with a world class team to develop effective IIC technology. We know from experience that to do it right will take years of development, testing, and operational training.

As with any futuristic endeavors, the question is whether we want to do nothing while we wait. Would we want to park all of our gas cars while we wait for everyone to have electric? Would we want to ground all planes while we wait for teleportation? Do we want to shut down shared spectrum while we wait for IIC? Obviously not. Google’s recent public stance is nothing more than an attempt to revise history and bypass necessary steps in the deployment of shared spectrum based on the fact that it’s a lot easier and less costly to submit an FCC filing than it is to successfully deploy an ESC network.

Our ESC network has been deployed nationwide since May 2019, with live commercial traffic since September 2019. Since then, we have been working to eliminate false positive data, and greatly reduce the impact of the ESC network itself on commercial CBRS use. We are not seeing the problems that Google cites in their FCC filing. We have heard from customers that Google is having massive problems with the sections of their ESC network that they have only recently deployed, so we believe that’s the root cause of their objection. Many customers who are deploying along the coastlines are switching to our SAS/ESC for just this reason.

We are approaching two years of learning, fine tuning, and improving our ESC network. We’ve identified and mitigated the early interferers we saw when we first stood up the network. We are on our second generation of sensor and second generation of antenna to increase detection sensitivity and fidelity, making sure naval radar is protected while delivering the maximum possible spectrum available for commercial use. Our network has weathered hurricanes and wildfires, and we’ve added battery backups and generators to ensure the network stays up and running. We have redundancy built into our network design to ensure the network remains highly available. We support our network with a 24×7 Network Operating Center to troubleshoot and solve problems as soon as they occur. These are all things that any carrier-grade network operator would do, and it’s all that’s required to continue to deliver CBRS shared spectrum for network densification, for fixed wireless services, and for the fast-growing private wireless market over the next few years.

Don’t take our word. Here’s a recent quote from one of our customers:

“We have been using the Federated SAS for a couple of weeks now and just finished converting our CBRS gear over to Federated SAS this morning. I would like to say, that life without senseless random and unexplained DPA events is much much better!! Your ESC network seems to be head and shoulders above whatever Google is doing!!!!!!” Greg Racino, ZipLink Internet, San Antonio, Texas

More Articles

The Unwavering Promise of America’s Wireless Future with Private Wireless

This article originally appeared in RCR Wireless.  If the White House’s $42.5B investment in Broadband, Equity, Access and Deployment (BEAD) signals anything, it’s this: While the 5G journey may — at the moment — appear to be slowing, our nation’s…

Read blog

Leveraging 5G for Military Modernization and Warfighter Readiness

This article originally appeared in Government Technology Insider.  Recent successful demonstrations of a private 5G network at Marine Corps Logistics Base Albany in Albany, Georgia, showed that the benefits of 5G for military logistics modernization and warfighter readiness will be realized in…

Read blog

Department of Defense (DoD) Spectrum and the Sharing Opportunity

This article originally appeared in PolicyTracker.  Defense ministries around the world control a significant amount of the spectrum. Thanks to advances in spectrum sharing, there is an opportunity to share some of these frequencies with commercial users, particularly from the…

Read blog